

Documentation for CopyCount-CNVTM

Software version: 2.1.9.2 Release Date for *CopyCount-CNV*TM: November 2, 2016

Written by: John SantaLucia, DNA Software, Inc. Documentation version: May 5, 2017

CopyCount-CNVTM and DNA Software products are for Research Use Only.

CopyCount-CNVTM Documentation

Step 0: What you need <u>before</u> running *CopyCount*:

A. You will need to retrieve your raw fluorescence PCR data from the Fluidigm BioMark instrument. In the BioMark real time-pcr data analysis software, click the menus:

File>Export and select: Table Results with Raw Data (*.csv)

Be sure to save the file with a name that is meaningful and note the location of the file so that you can retrieve it later when running *CopyCount*.

B. To run *CopyCount* you will need to gather the following information about each of the Gene-of-interest and control Assays:

Detection Channel used for Gene-of-interest (typically FAM-MGB) (typically VIC-MGB) Detection Channel used for CNV control Reaction Volume: 6.7E-9 (given in Liters) Length of amplicon: 105 (given in base pairs) Double Stranded? Yes If your original target is double-stranded DNA, then select yes (checked box in CopyCount). Alternatively, select No if the original target is single-stranded DNA or RNA (e.g. cDNA) Detection Method: TaqMan (can be Dye based (SYBR, EvaGreen, etc.) or TaqMan) [Primers]: 900E-9 (Molar concentration) [Probe]: 200E-9 (Molar concentration) (Answer "yes" if your TagMan probe has a minor groove binder at the 3'-end) MGB: Yes

Note: When you run an assay once in CopyCount, it is saved, so that in future runs you will not need to look up the assay information. This information is used by *CopyCount* to estimate the absolute calibration if no calibration plate was performed.

Input Step 1: Go to the DNA Software Application Portal: <u>https://portal.dnasoftware.com/login.jsf</u>

// dnasoftwa	dnasoftware Application Portal			
Login:	Not Registered Yet?			
jsl1964@hotmail.com	(What are you waiting for?)			
Login Click here to reset your password.	Click Here to Register!			
,				

Enter your login Email and Password and hit the Green "Login" button.

If you have never Registered before, it is easy! See the Appendix for Registration Details.

Input Step 2: This will bring you to the "Let's get started" page. Click the Blue button "Analyze qPCR Results with CopyCount".

Input Step 3: This will take you to the page below. Note the Blue Link that takes you to a PDF document that describes more about the theory behind *CopyCount*. Select the option "Begin your CNV Analysis".

Masoftware Application Portal					
	ST-CE - jsl1964@hotmail.com	Status: Ready	Show Tips		
DNA Software qPCR (
Begin Your Plate Analysis	Run this for your plate of sample u	nknowns (i.e. project).			
Begin Your CNV Analysis	Run this when you want CNV resul	ts.			
Process Calibration Plate	Run this once on each new assay	design.			
Manage Your Assays	Each assay design must either hav (which predicts an estimated calibo				
View Your CopyCount Projects	Results of previous submissions of	f projects.			
View Your Calibration Plates	Results of submitted calibration pla	ates.			

Click on the button "Begin Your CNV Analysis". That will bring you to the "Upload Page". Click on the "+ Choose" button and go to the location where you saved you raw data file (from <u>Step 0A</u>).

II dnasoftware Application Portal				
★ Home ▼ qPCR CopyCount ▼ ThermoBLAST-CE ▼ jsl1964@hotmail.com	Status: Ready	Show Tips		
Upload your qPCR Data				
Instructions: 1. Hit the "Choose" button. A browser window will appear. 2. Browse to the location on your computer where your data file is saved. Double click that file. 3. Click the "Next" Button on the bottom right of the screen.				
Helpful Links:				
Click here to read the qPCR CopyCount quickstart guide. Click here to see the list of supported data formats, as well as instructions for importing your raw data.				
+ Choose				
3Target_1362046298-raw.csv 12.9 MB 🗾 🗶				

If your file is recognized by *CopyCount*, then it will give the Format type for the file (in this case it determines it to be "Fluidigm" format). If your file is NOT recognized by *CopyCount*, then that means that you likely uploaded the wrong file (commonly users will mistakenly upload the C_T analysis file rather than the raw PCR fluorescence file). Click on the "Next" button.

Upload your qPCR Data

Instructions:		
2. Browse to the location	on. A browser window will appear. I on your computer where your data file is saved. Double click that file. n on the bottom right of the screen.	
Helpful Links:		
	R CopyCount quickstart guide. f supported data formats, as well as instructions for importing your raw data.	
	Your File:	
Name:	3Target_1362046298_raw.csv (Discard)	
Format:	Fluidigm	
		Next

Input Step 4: This brings you to the "Project Details" Page (more information on next page). Be sure to fill in all the fields (i.e. use information from **<u>Step 0B</u>**):

II dnasoftware Application Portal

ThermoBLAST-CE
 jsl1964@hotmail.com

Status: Ready Show Tips

DNA Software qPCR CopyCount

Instructions:

1. In the field labled "Project Name", please enter a descriptive name to help identify the project results in the future.

2. In the field for "Sample Volume" enter a number in scientific notation for the qPCR reaction volume in Liters. For example, 6.7 nL is entered as 6.7E-9.

3. Click the "Next" Button on the bottom right of the screen to proceed.

Why this is important: The absolute copy number calculation requires that the correct volume is given. If you enter the wrong volume, then the wrong copy number will be produced.

	Project Details
Project Name: *	3Target_1362046298_raw.csv
Sample Volume:	6.7E-9 L
Sample and control ran in same well:	© ● Yes No
Copies of control gene per genome:	1
Number of Replicates:	8
Expected Median CNV:	2
Adjustment Factor:	0.0
Gene of Interest:	Target: 16 Detection Channel: Probe FAM-MGB
CNV Control:	Target: RNAseP

Next

If you are a new user, then you can select the "Show Tips" box at the top right hand side of any page. We recommend <u>unchecking</u> "Show Tips" as the default and click it only when you have explicit questions.

Details about inputs:

Back

Project Name: I6 3Target 1362046298

CopyCount automatically fills in the name of the raw data file (e.g. 3Target_1362046298_raw.csv). But we recommend that you put in an informative name, since the same raw data file can be used for multiple assays that are processed separately. In this case, I named it "I6 3Target" because this is for samples using the I6 assay from plate number 1362046298.

Sample Volume: 6.7E-9 (give the PCR reaction volume in Liters, use scientific notation)

Sample and Control Run in the Same Well: Yes xNo (Default = No)

The user can set up their CNV experiment to run the gene-of-interest and the CNV control in either the same well (with different fluorophores) or in separate wells. *CopyCount* performs different replicate averaging and statistics for these two cases (ratio of the averages vs. average of the ratios are different!). Currently, Fluidigm does not support running the GOI and control in the same well (since it requires special instrument calibration with color compensation), but that capability is under

development. Acquiring CNV GOI and control data in the same well is the preferred best practice since it results in 41% smaller CNV error bars.

Number of Replicates: 8 (integer)

CopyCount can accept any integer up to the number actually acquired. In this case, we acquired 8 replicates for the GOI and the Control. If you select a number less than the actual number acquired, then *CopyCount* will break up the actual replicate set into smaller replicate sets. For example, if the actual number of replicates collected was 8, and you set the parameter Number of Replicates to "2", then *CopyCount* will break up the data into 4 groups of 2 replicates (each of the 4 groups is given a different name by *CopyCount*).

Expected Median CNV: 2 (integer)

Most users will just leave the default value of "2". Choose a number here that represents the number that you think will be most often represented CNV value in your data set. If you think most of the wells have a CNV = 2 (i.e. homozygote), then set this parameter to "2". Note that this is used just to get the algorithm started for the "Adjustment Factor" (described below). If you enter a slightly wrong value like "1" or "3" the algorithm will still compute correctly. However, if you are using *CopyCount* to compute CNV values larger than 3, then it is important to give a value that is close to the actual most common CNV value.

Adjustment Factor: 0.0 (real number, default = 0.0)

Most users will just leave the default value of 0.0. The "Adjustment Factor" is the factor used to convert the raw ratio of Copies of GOI / Copies of Control to compute the correct integer CNV value. If this is set to 0.0 then the algorithm will automatically determine the Adjustment factor (that value is in the CNV output file). If the user provides a value (like from a previous run of *CopyCount*) then that value will be used as a fixed Adjustment factor. In the (very rare) event that *CopyCount* gives an Adjustment factor that is "wacky", then this give the user a mechanism to force a value.

Gene of Interest: Target: I6Detection Channel: Probe FAM-MGBCNV Control:Target: RNasePDetection Channel: Probe VIC-MGBUse the menu pull downs to select all 4 of the required inputs.It is VERY important to get this correct!! Wrong selections will fit the wrong data!

Click on "Next" Button.

Input Step 5: *CopyCount* then automatically detects all the sample replicate sets. This is shown on the "Plate Layout" Page:

You cannot go forward until you Click on the "Provide Assay Details" once for the Gene of Interest, and once for the Control. Click on one of the buttons (it doesn't matter which one). If this is the first time you are running a particular assay then you will need to enter in the information from <u>Step 0B</u>.

		×
You may define a new assay, or choos	se from a list of your existin	g assays.
Provide Assay Details (New Assay)	Select Existing Assay	

If you have previously made an Assay for your GOI, then you can select the "Select Existing Assay" option and just select from the list given, as shown below:

Choose Assay:		
Calibration_Plate 10-20-2016.c \$	Save	Cancel

If you select "Provide Assay Details (New Assay), then you get the following window:

- 2. Enter the amplicon length (typically 60 to 150 BP, but longer lengths are allowed).
- 3. If your target DNA is double-stranded, then check the associated box.
- 4. Choose whether your assay is a TaqMan assay or DNA-binding dye (e.g. SYBR or SYTO). Other qPCR formats (e.g. Molecular beacons and Scorpions) are not yet supported.
- 5. Enter the primer concentration (molar units). If your assay is a TaqMan assay, then you will also need to enter the probe concentration.
- 6. If your TaqMan probe has a minor groove binder (e.g. for assays from Life Technologies), then check the box for MGB.

	Assay Details	
Name: *	l6 new	
Amplicon Length: *	71	
Double-stranded?	~	
Detection Method:	TaqMAN	
Primer Concentration	900E-9	М
Probe Concentration	200E-9	М
Using MGB?	~	

After you select the "Save" button, then you will be taken back to the Plate Layout Page. Note that all the replicates for the GOI are now filled in with "I6 new".

	oftware [,] Applic		
★ Home	unt	hotmail.com	Status: Ready Show
ONA Software	e qPCR CopyCour	nt	
late Layout			
ngs easier for you. The replicate sets	mation regarding the layout of your plate (i.e., targets § (i.e. dilutions) we've identified are listed below. If the say Details [*] button next to each assay. After you've opyCount analysis job.	ese sets look correct, you need to provide	some details regarding the assays we've identif
wever, if the sets look wrong, click " king to improve, and we appreciate	Input Plate Layout Manually* (and maybe consider le it).	tting us know about our mistake by clickir	ig the "Feedback" button above - we're always
ate: 16 3Target_1362046298			
Set Name	Wells In Set	Assay For Set	
C-FR06001916_I6_1	S78-A31,S78-A32,S78-A33,S78- A34,S78-A82,S78-A81,S78-A80,S78- A79	l6 new	~
C-FR06001916_I6_2	S77-A31,S77-A32,S77-A33,S77- A34,S77-A82,S77-A81,S77-A80,S77- A79	l6 new	*
C-FR06001916_RNAseP_1	S78-A43,S78-A44,S78-A45,S78- A46,S78-A94,S78-A93,S78-A92,S78- A91	Control	Provide Assay Details
	A46,S78-A94,S78-A93,S78-A92,S78-	Control	Provide Assay Details Provide Assay Details
C-FR06001916_RNAseP_1 C-FR06001916_RNAseP_2 C-FR06001940_I6_1	A46,S78-A94,S78-A93,S78-A92,S78- A91 S77-A43,S77-A44,S77-A45,S77- A46,S77-A94,S77-A93,S77-A92,S77-		

However, the Control replicate sets still have the "Provide Assay Details" buttons. Click on one of those buttons. I selected an Existing Assay for "RNaseP 2".

Control

Provide Assay Details

S54-A43,S54-A44,S54-A45,S54-A46,S54-A94,S54-A93,S54-A92,S54-

A91

C-FR06001940_RNAseP_1

Then the program returns you to the Plate Layout Screen as shown below:

DNA Software qPCR CopyCount

Plate Layout

Plate: 16 3Target 1362046298

It looks like your data file contains information regarding the layout of your plate (i.e., targets, dilutions, etc.). We ve attempted to automatically import this layout information to make things easier for you. The replicate sets (i.e. dilutions) we've identified are listed below. If these sets look correct, you need to provide some details regarding the assays we've identified for the sets, by clicking the 'Provide Assay Details' button next to each assay. After you've provided details for each assay, you can click 'Proceed''. You will then be able to review your replicate sets before submitting your CopyCount analysis job.

However, if the sets look wrong, click "Input Plate Layout Manually" (and maybe consider letting us know about our mistake by clicking the "Feedback" button above - we're always looking to improve, and we appreciate it).

Set Name	Wells In Set	Assay For Set	
C-FR06001916_I6_1	S78-A31,S78-A32,S78-A33,S78- A34,S78-A82,S78-A81,S78-A80,S78- A79	l6 new	*
C-FR06001916_I6_2	S77-A31,S77-A32,S77-A33,S77- A34,S77-A82,S77-A81,S77-A80,S77- A79	l6 new	*
C-FR06001916_RNAseP_1	S78-A43,S78-A44,S78-A45,S78- A46,S78-A94,S78-A93,S78-A92,S78- A91	RNaseP_2	*
C-FR06001916_RNAseP_2	S77-A43,S77-A44,S77-A45,S77- A46,S77-A94,S77-A93,S77-A92,S77- A91	RNaseP_2	*
C-FR06001940_I6_1	S54-A31,S54-A32,S54-A33,S54- A34,S54-A82,S54-A81,S54-A80,S54- A79	l6 new	*
C-FR06001940_I6_2	S53-A31,S53-A32,S53-A33,S53- A34,S53-A82,S53-A81,S53-A80,S53- A79	l6 new	*
	S54-A43 S54-A44 S54-A45 S54-		

You can see that now all the replicate sets have an Assay Name. In your browser, Scroll to the bottom of the page (this is a huge data file!). Click on the Button "Proceed and Use These Replicate Sets".

CHIP-NTC_RNAseP_1	S04-A43,S04-A44,S04-A45,S04- A46,S04-A94,S04-A93,S04-A92,S04- A91	RNaseP_2	~
CHIP-NTC_RNAseP_2	S03-A43,S03-A44,S03-A45,S03- A46,S03-A94,S03-A93,S03-A92,S03- A91	RNaseP_2	~
PA-NTC_I6_1	S02-A31,S02-A32,S02-A33,S02- A34,S02-A82,S02-A81,S02-A80,S02- A79	l6 new	~
PA-NTC_I6_2	S01-A31,S01-A32,S01-A33,S01- A34,S01-A82,S01-A81,S01-A80,S01- A79	l6 new	~
PA-NTC_RNAseP_1	S02-A43,S02-A44,S02-A45,S02- A46,S02-A94,S02-A93,S02-A92,S02- A91	RNaseP_2	~
PA-NTC_RNAseP_2	S01-A43,S01-A44,S01-A45,S01- A46,S01-A94,S01-A93,S01-A92,S01- A91	RNaseP_2	~

Discard This and Input Plate Layout Manually

Proceed and Use These Replicate Sets

Back

Input Step 6: This Brings you to the "Replicate Sets" page.

The purpose of this screen is to allow you to declare which wells form each set of replicates. These replicate sets tell the program which wells should be averaged together to calculate the "Mean Copy Number". Every well must have assigned to it a replicate set name and a corresponding assay name. It is important that the user properly declare the replicates that correspond to the pitel is pourt that was actually performed.

Instructions:

1. Click on the button "Add Sample Replicate Set". You will see a list of all the qPCR wells present in your uploaded data file, with a check box on the left of each qPCR well. 2. After you have added all of your replicate sets, the "Next" Button on the bottom right of the screen.

Why this is important: If a well is not declared in any replicate set, then it will be ignored and no copy number will be produced for such undeclared wells. If you really have unused wells, then those should not be declared. If you have no template controls, then we recommend that you declare those as a separate replicate set so that the program will analyze those to determine if any of those wells unexpectedly actually do contain target DNA (i.e. false positives).

Plate: I6 3Target_1362046298

Replicate Sets

Set Name	Wells In Set	Assay	Edit	Delete
C-FR06001916_I6_1	S78-A31,S78-A32,S78- A33,S78-A34,S78-A82,S78- A81,S78-A80,S78-A79	l6 new	Edit Set	Delete Set
C-FR06001916_I6_2	S77-A31,S77-A32,S77- A33,S77-A34,S77-A82,S77- A81,S77-A80,S77-A79	l6 new	Edit Set	Delete Set
C-FR06001916_RNAseP_1	S78-A43,S78-A44,S78- A45,S78-A46,S78-A94,S78- A93,S78-A92,S78-A91	RNaseP_2	Edit Set	Delete Set
C-FR06001916_RNAseP_2	S77-A43,S77-A44,S77- A45,S77-A46,S77-A94,S77- A93,S77-A92,S77-A91	RNaseP_2	Edit Set	Delete Set
C-FR06001940_I6_1	S54-A31,S54-A32,S54- A33,S54-A34,S54-A82,S54- A81,S54-A80,S54-A79	I6 new	Edit Set	Delete Set

Scroll to the bottom of that huge page and select the button "Submit Job for Analysis".

	A33,S02-A34,S02-A82,S02- A81,S02-A80,S02-A79	l6 new	Edit Set	Delete Set
PA-NTC_I6_2	S01-A31,S01-A32,S01- A33,S01-A34,S01-A82,S01- A81,S01-A80,S01-A79	l6 new	Edit Set	Delete Set
PA-NTC_RNAseP_1	S02-A43,S02-A44,S02- A45,S02-A46,S02-A94,S02- A93,S02-A92,S02-A91	RNaseP_2	Edit Set	Delete Set
PA-NTC_RNAseP_2	S01-A43,S01-A44,S01- A45,S01-A46,S01-A94,S01- A93,S01-A92,S01-A91	RNaseP_2	Edit Set	Delete Set
Add Sample Replicate Set				
Inese wells, which have not been as	signed to a replicate set, will not be in	cluded in the final PCR analysis.		

You will get the following screen if you did everything correctly:

Click on the Blue link, to see your results.

<u>Output Step 1</u>: Go to the Results page. (You can get to the anytime by clicking on the menu "qPCR CopyCount" and select "View Projects".

♣ Home	t ThermoBLAST-CE	64@hotmail.com	Status: Ready Show Tip
our CopyCount project history is shown	below. If you are waiting for a project to comp	lete, this list will automatically update when i	t is done.
PCR CopyCount Pro	jects		
oday			
Name	Run Date	Job Status	Results
l6 3Target_1362046298	Thursday, May 4, 2017 11:04:09 PM	Working	Plate Not Ready
3Target_1362046298_raw.csv	Thursday, May 4, 2017 8:00:33 PM	Done!	View Results
Ider Than Two Months			
Name	Run Date	Job Status	Results
Titration_Series.csv	Thursday, October 20, 2016 8:22:47 PM	Done!	View Results
			View Results
3Target_1362046298_raw.csv	Thursday, October 20, 2016 8:03:20 PM	Done!	View Results
3Target_1362046298_raw.csv 3Target_1362046298_raw.csv		Done!	View Results

For large Fluidigm datasets the analysis will take about 1-2 minutes at which time the web page will update the Job Status to "Done!".

Output Step 2: Click on "View Results" to get the following results page. You can use your browser to scroll down to see more information.

© 2017 DNA Software, Inc. CopyCount-CNV[™] and DNA Software products are for Research Use Only.

Note that you can download all the tables of data as .CSV files and graphs as .png files (Click on the Blue links). Other information reported are as follows:

Adjustment Factor = 0.0655 (you could use this number for other data sets in future runs of CopyCount for other samples of I6. This value should not change substantially from plate to plate for the same assay, but different adjustment factors are typical for different assays. Note: we define an "Assay" by the primer sequences.

The Standard Deviation = 0.0832 (this is the standard error in the experimental Ratio of GOI/Control averaged over all the replicate sets). Thus in this case, a CNV of 2.0 is different from CNV = 3.0 by 12 standard deviations (Z-score = (3 - 2)/0.0832 = 12.02).

The graph below, gives a summary of all of the Predicted CNV (Y-axis) vs. the experimental CNV ratio (X-axis) so you can see the quality of the CNV calls. Note that highly confident CNV calls are shown as green dots "•" and ambiguous CNV calls are graphed with a red "x" (CNV values close to half-integers are ambiguous).

The graph below summarizes the scatter in the Copies of GOI (Y-axis) vs. Copies of Control (X-axis). This shows you the spread CNV data. Samples with CNV = 1 lie along the line y=x. Samples with CNV = 2 lie along the line y = 2x. Note that PCR data acquired with very low amount of sample DNA (below 100 molecules) are not as reliable as datasets collected with higher DNA amounts.

An example of the Table of CNV results is shown below:

Number	Replicate Set Names	GOI Average	Control Average	Raw Ratio	Adjusted Ratio	CV of Ratio	Z-Score	Confidence	CNV Call	Comments
1	C- FR06001916_I6 C- FR06001916_RI	45	358	0.127	1.922	0.0865	0.933	0.993	2	Unreliable due to low sample
2	C- FR06001916_I6 C- FR06001916_RI	44	340	0.13	1.968	0.0845	0.389	0.996	2	Unreliable due to low sample
3	C- FR06001940_I6 C- FR06001940_RI	23	154	0.148	2.245	0.0741	2.947	0.952	2	Unreliable due to low sample
4	C- FR06001940_I6 C- FR06001940_RI	22	160	0.139	2.105	0.079	1.259	0.991	2	Unreliable due to low sample
5	C- FR06001954_I6 C- FR06001954_RI	54	393	0.136	2.067	0.0805	0.803	0.994	2	Unreliable due to low sample

The meanings of the columns are as follows:

Number: This is the replicate set number.

- Replicate Set Names: self-explanatory.
- **GOI Average**: This is the absolute number of molecules of DNA of GOI averaged across all the wells in the replicate set.
- **Control Average**: This is the absolute number of molecules of DNA of the CNV Control averaged across all the wells in the replicate set.
- **Raw Ratio** = GOI Average / Control Average (note that this ratio has systematic error because neither the GOI or the Control have been calibrated for absolute quantification)
- Adjusted Ratio = Raw Ratio / Adjustment factor This number should be close to an integer (Adjustment factor = 0.0655 in this case)
- **CV of Ratio** = coefficient of variation of Adjusted Ratio (CV = standard deviation / Adjusted Ratio)

Z-score: Number of standard deviations between the Adjusted ratio and the closest integer Z-score = | closest integer – Adjusted Ratio | / CV

For the first row data we get: Z-score = |2 - 1.922|/0.0865 = 0.933

- **Confidence**: Gives the statistical confidence that the reported CNV integer is correct. More details are given below.
- CNV Call: The is the closest integer to the Adjusted ratio.
- **Comments**: In the Table of CNV results, the rightmost "Comment" column gives information about samples that are unreliable, or ambiguous CNV calls (confidence < 0.75). Numerous experiments have shown that essentially all of the CNV calls with Confidence > 0.75 were experimentally verified to be correct. Note that PCR data acquired with very low amount of sample DNA (below 100 molecules) are not as reliable as datasets collected with higher DNA amounts, so comments to that effect are also displayed when appropriate.

More Information about the "Confidence" calculation. The Confidence score asks a simple question: When we observe a CNV value of 1.922 with CV = 0.0865, how confident are we that the actual CNV is 2 rather than 1? In this case, the Table reports "99.3%" Confidence (so we would expect to make an error only 0.7% of the time). The confidence score is based upon the analysis of the Gaussian distributions for means of 1, 1.922, and 2 with their respective uncertainties (see figure

below). The overlaps of these distributions (areas under curves computed using the cumulative distribution functions) is used to compute the confidence score.

CopyCount also allows you to see the raw data and fitted curves for each PCR reaction. Just select the well number that you want to observe and the curve will be shown.

CopyCount provides detailed information about the replicate sets and how they were averaged. See the Table below:

Replicate Sets

C-FR06001954_I6_2

C-FR06001954_RNAseP_1

C-FR06001954_RNAseP_2

replicate octa					
the reproducibility of the whole of the same assay (i.e. the calib 1.96 standard deviations from t	replicate sets: The "Mean DNA Copi replicate set (with errors included fro pration error is not important for relat the mean) is 2804 to 3196 copies. o count measurements of two replicat	om all sources including tive comparisons). For ex absolute is the standard	fitting and pipetting). σ relative is t ample, if the mean is 3000 copies error in the mean with inclusion of	he appropriate error to use for cc and the σ mean is 100, then the	omparisons of different samples 95% confidence interval (i.e.
Click here for more information	about how to interpret your results.				
Name	Wells in Set	Outlier Wells	Mean DNA Copies	σ Relative	σ Absolute
C-FR06001916_I6_1	S78-A31,S78-A32,S78-A3		45.38	2.087	9.312
C-FR06001916_I6_2	S77-A31,S77-A32,S77-A3		44.13	1.202	8.906
C-FR06001916_RNAseP_1	S78-A43,S78-A44,S78-A4		358.1	8.254	72.10
C-FR06001916_RNAseP_2	S77-A43,S77-A44,S77-A4		340.3	8.954	68.64
C-FR06001940_I6_1	S54-A31,S54-A32,S54-A3		22.75	1.013	4.661
C-FR06001940_I6_2	S53-A31,S53-A32,S53-A3		22.13	0.875	4.511
C-FR06001940_RNAseP_1	S54-A43,S54-A44,S54-A4		153.8	4.439	31.07
C-FR06001940_RNAseP_2	S53-A43,S53-A44,S53-A4		159.5	4.367	32.20
C-FR06001954_I6_1	S42-A31,S42-A32,S42-A3		53.50	2.854	11.07

Note that Outlier wells are automatically thrown out. For example, S45-A91 (CopyCount=644 molecules) whereas the other 7 replicates are: 505, 471, 485, 464, 427, 464, 452 for an average = 466.9 with relative error = 9.293 molecules.

54.38

392.8

380.8

2.283

9.059

9.367

11.11

79.07

76.72

CopyCount gives the Assay information is given at the bottom of the page:

S41-A31,S41-A32,S41-A3...

S42-A43,S42-A44,S42-A4.

S41-A43,S41-A44,S41-A4...

Assays

Name	Calibrated Assay ?	Double-Stranded Target	Amplicon Length	Detection Method	Primer Concentration	Probe Concentration	Using MGB
l6 new	false	true	71	TAQMAN	9.0E-7 M	2.0E-7 M	true
RNaseP_2	false	true	87	TAQMAN	9.0E-7 M	2.0E-7 M	false

Appendix: Registration

Registering for the DNA Software Application Portal is painless and mostly self-explanatory, but details are provided here if you need them. If you have any problems with registration, please contact Joseph Johnson at: Joseph.johnson@dnasoftware.com

<u>Step 1</u>: Go to the DNA Software Application Portal: https://portal.dnasoftware.com/login.jsf

DNA Software Portal Login ×	John
$\leftarrow \ ightarrow \ {f C}$ $\ {f C}$ $\ {f B}$ Secure https://portal.dnasoftware.com/login.j	isf 🕴 🤋 🔍 👰 📥 📀
🗰 Apps 🗾 Home - DNA Software 🎇 Google Maps 🗎 News 💶	YouTube 🧃 AWS S3 🗋 New Tab 🗎 Other Bookmarks
I dnasoftware	Application Portal
Login:	Not Registered Yet?
jsl1964@hotmail.com	(What are you waiting for?)
a Login	Click Here to Register!
Click here to reset your password.	

To register, just Click on the BLUE button "Click Here to Register".

Provide your email address and then you will automatically get an email sent to that address.

DNA Software Portal Registrati	John
← → C a Secure https://portal.dnasoftware.com/apply.jsf	२ 🛧 🖸 🗖 🖗 🍝 📀
🗰 Apps 🗾 Home - DNA Software ≹ Google Maps 📄 News 💶 YouTube 🧃 AWS S3 🗋 New Tab	🛅 Other Bookmarks
I dnasoftware Application Port	tal
To begin the registration process, please enter your email address below and a register button.	click the
Shortly thereafter, you will receive an email instructing you how to proceed w registration process.	ith the
Email: * Register	

Step 2: The email you will receive will look like the screenshot shown below:

<u>Step 3</u>: Click on the link in the email and that will take you to the Registration web page shown below. Complete the registration. Once you and done filling out the form, Click the "Register" button.

DNA Sof	ftware Portal Registrati × V DNA Software Portal Registrati × John Software Portal Registrati ×	n
	e https://portal.dnasoftware.com/register.jsf?code=b43a7b26-cba7-4cdd-9f 🕴 🔍 🕁 🧧 🔽 👰 🤷 🌖	5
🗰 Apps 🛛 🗾 Home - DN	IA Software 🕂 Google Maps 📄 News 💶 YouTube 🧃 AWS S3 🗋 New Tab 📄 Other Bookmarl	٢S
// d	nasoftware Application Portal	
Email:	has824@yahoo.com	
First Name: *	John	
Last Name: *	SantaLucia	
Phone Number: *	3138203847	
Institution: *	DNA Software, Inc.	
Zip/Post Code: *	48236	
Country: *	United States	
Time Zone: *	GMT-0400 Eastern Standard Tir 💌	
Password: *		
Confirm Password: *		
Number Format C	Convention	
	e instructions carefully.	
	s have different conventions for writing numeric values, so we need to know what yours is in order to parse your ow are some examples of the differences in international number formats.	
	glish is written 1.234,00 in German. sh is written 1,2345 in French.	
	about this setting, we'd recommend leaving it as the default for now. You can change this setting later at any g it in the Account Management screen.	
Number Format Co	prvention: *	
English	▼	

Register

<u>Step 4:</u> That's it! You are now registered to use the DNA Software Application Portal. If you have already paid for the license to use the software, then you are all set and you can begin using the software immediately. If you have not paid, then DNA Software staff will contact you to discuss license options.

The first time you log on to the account, you will be asked to Accept both the "End User License Agreement (EULA)" and the "Privacy Policy". On each page, scroll to the bottom and click the "Accept" button on the Left side.

Once you have accepted the EULA and Privacy terms, then you will see a popup message:

Welcome to the DNA Software Portal!

It looks like this might be your first time using the portal. We'd like to provide some tips to help you get started.

If you'd prefer not to receive tips, just uncheck the "Show Tips" box at the top-right corner of the screen.

Click the "OK" button and then you will be taken to the Application Portal where you can immediately start submitting your jobs.